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ABSTRACT
Adequately exercising the behaviors of autonomous vehicles is fun-
damental to their validation. However, quantifying an autonomous
vehicle’s testing adequacy is challenging as the system’s behavior
is influenced both by its state as well as its physical environment.
To address this challenge, our work builds on two insights. First,
data sensed by an autonomous vehicle provides a unique spatial
signature of the physical environment inputs. Second, given the
vehicle’s current state, inputs residing outside the autonomous ve-
hicle’s physically reachable regions are less relevant to its behavior.
Building on those insights, we introduce an abstraction that enables
the computation of a physical environment-state coverage metric,
PhysCov. The abstraction combines the sensor readings with a phys-
ical reachability analysis based on the vehicle’s state and dynamics
to determine the region of the environment that may affect the
autonomous vehicle. It then characterizes that region through a
parameterizable geometric approximation that can trade quality
for cost. Tests with the same characterizations are deemed to have
had similar internal states and exposed to similar environments
and thus likely to exercise the same set of behaviors, while tests
with distinct characterizations will increase PhysCov. A study on
two simulated and one real system’s dataset examines PhysCovs’s
ability to quantify an autonomous vehicle’s test suite, showcases
its characterization cost and precision, investigates its correlation
with failures found and potential for test selection, and assesses its
ability to distinguish among real-world scenarios.
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1 INTRODUCTION
This work explores a fundamental and open question in testing au-
tonomous vehicles: to what extent does a system test suite exercise
the potential system behaviors?

Typically, software engineers rely on abstractions of the input
space to define equivalent input classes. The underlying principle is
that inputs within an equivalent class exercise similar behavior. If
the abstraction is effective at clustering inputs into classes that lead
to similar behavior, then the percentage of classes covered provides
a means to quantify the extent that a test suite exercises the system.

In the context of autonomous systems, such as autonomous
cars and drones, the system behavior is significantly influenced
by the system’s state and its surrounding physical environment.
The vehicle’s pose, speed, and acceleration, the road topology, the
surrounding traffic, the signage, and other objects in the environ-
ment influence the vehicle’s actions. Yet, existing adequacy criteria
are insufficient to abstract autonomous vehicles’ system state and
environment into equivalent classes.

Structural code coverage [60, 63] and the coverage of learned
components [27, 62] are not cognizant of the system’s physical
state and environment attributes, resulting in distinct scenarios
that render the same coverage. The industry reported miles driven
criterion [6, 30] does not consider the state of the vehicle nor the
scenarios traveled, so miles driven at high or low speeds or through
suburban traffic or multi-lane highway are considered equivalent.
Coverage of requirements defined by domain experts as per the
system state [28] or the environment [47] are valuable to establish
acceptance tests but are not scalable given the space of behaviors
triggered by state and environment. Scenario coverage [39] incor-
porates the physical environment by building a situation graph
containing the objects, their attributes, and their relationships in an
environment. This approach is feasible as long as the ground truth
graphs can be pre-computed, severely curtailing its applicability
beyond limited simulation environments. Trajectory coverage relies
on a vehicle position [26] but ignores other aspects of the system
state and the environment. This means, for example, that two tests
that cause the vehicle to visit the same positions are deemed equiv-
alent even if one does so at high speed while changing lanes while
the other does it at slower speeds while avoiding obstacles.

However, incorporating a vehicle’s state and physical environ-
ment into a coverage criterion is challenging for several reasons.
First, the vehicle’s state is rich and amenable to amyriad of represen-
tations, making the generalization of a coverage measure difficult.
Second, the world has a practically infinite number of complex
environments, which makes identifying equivalence classes and
estimating the total number of classes hard and onerous. Third,
the many subtle interactions between vehicle state and the envi-
ronment and how that affects a vehicle’s behavior means that any
coverage metrics must consider those dimensions jointly.
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